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Abstract

This paper describes the manual conversion of several vectorized

Fortran algorithms to the iPSC/860. The codes typify NAS Y-MP

solution techniques and represent the types of algorithms that

automatic parallelizers must analyze and decompose. The

straightforward, high-level domain decompositions employed for the

explicit and SOR algorithms performed quite well. The implicit ADI

algorithm required a new solver to reduce communication loads and a

pipelined scheme to increase node utilization. The loop-level

decomposition employed for the multigrid algorithm performed

poorly. The major lesson taught by these manual transformations is

that automatic tools must expose or utilize parallelism at a high level

to create effective distributed memory codes. The postprocessor PAT

utility assisted in disclosing reasons for less-than-expected parallel

performance.

1.0 Introduction

The current limits on technology indicate that future high speed

computer systems will employ multiple processors, operating in

parallel, to solve computationally-intensive problems. Highly parallel

machines have distributed memories and require coarse-grained

partitioning to amortize the communication overhead incurred by

transmitting messages over networks. Coarse-grained parallel

execution requires substantial rewriting of singletasked source

programs to enable independent execution of tasks larger than those

performed by DO-loops. The past success of automatic vectorization has

motivated the development of automatic parallelization tools to

reduce the user effort in constructing parallel programs from

singletasked programs.

The parallel tools should help users construct code for task allocation,

CPU synchronization, and interprocessor communication. Code

generated by automatic tools for this purpose can assume many forms,

depending upon the target parallel architecture and the transformation

rules internal to the tool. Evaluation of coarse-grained tools needs at
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least one example of a source transformation for comparison against
the tool-generated code. This report presents the results of user-written,
higher-level transformations on these same sources for execution on a
distributed memory machine. Comparison of the transformed source
to those produced with the help of the parallel tool should help in the
evaluation of automatic tools for highly parallel machines.

Typical steps in creating a parallel program consist of algorithm
decomposition, mapping the calculations to the processors, and tuning
the program to increase performance. Algorithm decomposition
involves the separation of the calculation into a set of tasks which can
act independently on distinct sets of data. Common strategies for
segregating the calculations are based on geometry or control. Mapping
these tasks to the processorsconsists in assigning parts of the
calculation to the processors in such a way asto balance the
computational load and minimize communication delays. Tuning the
program involves those steps required to enhance performance. To
increase the floating point performance of individual nodes, such
tuning might involve replacement of critical sections of Fortran with
assembler code or invoking specialized math libraries. Tuning might
also require an improved mapping strategy or use of asynchronous
message-passing to reduce the communication overhead.

Since the purpose of this work is to illustrate the sort of steps required
to obtain efficient iPSC/860 code, this report will emphasize the first
two areas.

1.1 The iPSC/860 Environment

All calculations reported here were performed on the NAS Intel

iPSC/860, an Intel i860 processsor-based hypercube, with 128 processing

nodes attached to an Intel 80386 host processor. The i860 node has an 8

Megabyte (MB) memory, an 8 Kilobyte (KB) cache and multiple

arithmetic units which allow multiple operations per cycle. All

calculations reported here were performed in 64-bit mode, making the

data capacity of the i860 node memory effectively equal to 1 MW and

the cache effectively equal to 1 KW. The i860 node has a peak

performance of 40 MFLOPS in M-bit mode.

Since the iPSC/860 is a Multiple Instruction, Multiple Data (MIMD)

computer, individual nodes perform independently (asynchronously)

unless coupled by synchronization. Moreover, the parallel processes

which perform the calculations access data which is private to each

process. Processes obtain needed data and achieve synchronization by

exchanging messages with each other. The node hardware includes

direct connect modules which relieve the node CPU of routing

overhead. There is incentive for exchanging small messages. Messages

of length less than 100 bytes are sent without a precursor message to

verify the existence of sufficient data space on the receiving node.
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Messagesexceeding 100bytes require an additional round trip to verify
the existenceof the required spaceon the receiving node. Messages
longer than 2000bytes require additional system intervention as the
4000byte FIFOsare emptied.

Intel also provides a Performance Analysis Tool (PAT) to help users
measure a variety of parallel performance parameters (Intel, 1992).This
utility gathers runtime performance data for later postprocessing. The
tool has simple options for subroutine and message-passing timings
and more complex options for tracing parallel program execution.
Section 6 provides examples of PAT useand graphical output.

1.2The Parallel Suite

This paper describes the modifications required to create iPSC/860

versions of five Fortran codes used previously to test the ability of the

Cray Fortran PreProcessor (FPP) to generate efficient parallel code on

the Cray Y-MP (Bergeron, 1993). The codes, employing numerical

methods programmed for execution on a vector machine, typify

solution techniques which NAS users would submit for parallelization

by an automatic preprocessor. The suite includes the following kernels:

• Successive OverRelaxation (SOR) algorithm in a cube geometry,

• Shallow Water Model (SWM) providing an explicit solution to the

two-dimensional mass and momentum equations treating wave

motion,

• PARAllel Cyclic Reduction algorithm (PARACR) solving a two-

dimensional tridiagonal system,

• A 2-D Alternating Direction Implicit (ADI) algorithm, and a

• MultiGRid (MGR) algorithm in a cube geometry.

The following sections provide some iPSC/860 ground rules for

evaluation and describe the performance of each of the five codes. The

paper presents the codes in the order of difficulty. Implementation of

the explicit codes, SOR and SWM, required much less effort than the

implicit code. The implicit code required both a new solver and a

pipelined implementation. The MGR employed the Y-MP

decomposition. The paper also presents some tool characteristics which

would be desirable for parallelizing NAS workload iprograms.
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2.0 Ground Rules and Observations

The following section provides ground rules and evaluation

technique for parallel versions of the singletasked versions in the suite.
This section also includes some observations on the iPSC/860 node

performance.

2.1 Ground Rules

This work presents the changes required to convert single processor Y-

MP vector code to iPSC/860 parallel, distributed memory code. The

changes were made in the fashion of a tool-based conversion which

preserved the original algorithm. While the performance of these

codes do not represent the best iPSC/860 parallel implementation of

the algorithms, a knowledge of the typical changes involved with such

a conversion should allow NAS to judge the suitability of the various

parallel tools for NAS users. Such knowledge should also help NAS

influence the future development of such tools.

Ground rules to guide the "tool-based" creation of double precision

(64-bit) versions of all 5 programs in the suite include:

-Use of a manual port to permit the large-scale algorithm changes

required by some codes to produce efficient performance.

-Use of natural (sequential) node ordering for mapping the two-

dimensional grids onto the hypercube. This restriction means that

nearest neighbor nodes in a grid layout will not correspond to nearest

neighbors on the hypercube topology and that message-passing

performance will suffer relative to a version employing Gray code

numbering. This approach is consistent with the spirit of a tool-

generated conversion.

-Emphasis on synchronous I/O for the message-passing. While it was

thought initially that all codes could employ synchronous message-

passing, later experience revealed that all codes could benefit from

asynchronous data transmittal.

-Use only the iPSC/860 1MW per node memory. In some cases, this

rule limits the suite problem sizes. In practice, iPSC/860 users must

employ disk files or CFS to store data for large amounts of data.

However, iPSC/860 I/O performance does not scale with the number of

nodes (Nitzberg, 1993) and employing the CFS for extensive I/O would

cloud the evaluation of the port.

-Use of limited compiler tuning. Except where noted, the only compiler

tuning consisted of modifications to ensure that all major DO-LOOPS

involved sequential access to the major arrays.

In addition, all programs used the iPSC/860 fast divide option and all

program FLOPS reflect a manual FLOP count of the iPSC/860 source



code with 4 FLOPSassigned for the divide. The divide count is
somewhat lower than other estimates (Bailey, 1993),but the divide
operation constitutes a small fraction of the overall FLOP count.



2.2 Evaluation Technique

The report provides several methods for evaluating the parallel

decompositions. The first measure is the hardware efficiency, e, which

is usually defined as

T(1)

e - N*T(N) (1)

where T(1) and T(N) denote the elapsed time for execution of the same

problem of 1 and N CPUs respectively. Parallel decomposition of the

problem implies that each of the N nodes solves a smaller problem

than that solved by a single node. Cache inefficiencies can inhibit such

single node performance and lead to parallel efficiencies exceeding

100%. Thus, the report follows a previous approach (Dongarra, 1990) to

define efficiency as

R(1)

e - N*R(N) (2)

where R(1) denotes the maximum double precision single processor

rate of 40 MFLOPS and R(N) denotes the N-processor rate.
A series of benchmark codes has rated the 128-node Intel Touchstone

at about 250 MFLOPS on compiled code (Bailey, et al., 1991). A second

criterion for an effective port is that its 128-node performance should

equal or exceed this 250 MFLOPS rating.

A third measure of the effectiveness of the iPSC/860 decompositions

is the ratio of computation to communication and a ratio of 50% is

reported as a relatively efficient implementation on a typical full-scale

problem (Mavriplis, et al., 1992).

2.3 Observations

The iPSC/860 chip demands careful attention to details for maximum

performance. A 64-bit data bus connects the off-chip node memory to

an on-chip data cache. Since the node memory is located off-chip, high-

performance code must effectively utilize the small on-chip data cache

and limited off-chip memory bandwidth (Lee, 1991). An onboard

hardware cache supervisor manages the cache in real-time. Two

programs producing essentially the same assembly code can display

significantly different performance due to the intervention of this

cache supervisor.

Supplying the compiler with code containing properly unrolled

and/or stripmined loops will improve cache utilization and

application performance (Carr and Kennedy, 1992). These



modifications enforce data locality, i.e., they force the CPU to access data

elements in terms of small neighborhoods of memory. Such access

patterns promote the reuse of data stored in the on-chip data cache and

prevent the CPU from stalling for lack of data. Performance is strongly
sensitive to data location, i.e., whether the application executes with

data "in cache" or whether the application runs with data "out of

cache". In some cases, the application performance degrades severely,

as shown in Figure 1.

Figure 1

SOR:Single iPSC/860 Node Rates
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The figure shows severe performance degradation when the number

of grid points per edge is a multiple of 32. The iPSC/860 node cache is

8K, two-way, set assodative. The 8K denotes the size of the cache as 8K

bytes or 1K (1024) double precision words. A two-way set associative

cache places into the same cache set two words which are separated by a

fixed multiple of words in the off-chip memory. In the i860 design, the

fixed multiple is 4K bytes or 512 words. The algorithm for loading cache

lines is random replacement. If the cache consists of two lines of

contiguous data, it is possible for each data reference separated by 512

words to overwrite data before it is used. This separation can result in a

constant loading/reloading (thrashing) of cache until the loop

completes. Insertion of buffer arrays to separate critical arrays by more

than 512 words should relieve the cache thrashing.



8

Figure 1 also shows typical single node performance and the sort of

performance improvement which can be achieved due to loop

unrolling. The computational loops were executed with stride 2 and

the second iteration written out explicitly. This modification allowed a

more efficient utilization of the on-chip cache and produced about a

10% improvement in performance.

The inability of the current iPSC/860 compiler to optimize

compilations is due in part to compiler immaturity and also to the

difficulty of generating efficient code for the iPSC/860 chip. The

relatively small number of registers contained on the chip mandates a

high degree of register reuse and forces an explicit control of the

pipelined units (Case, 1992). Application of the Cray Fortran compiler

expertise to the DEC ALPHA chip has currently yielded a performance

improvement of about 50% relative to the native compiler and this

value would seem to be a good estimate for the ability of a mature

compiler on the iPSC/860.
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3.0 Successive OverRelaxation Algorithm

3.1 Code Description

NAS users employ the Successive OverRelaxation (SOR) algorithm in

advanced formulations involving fluid dynamics on unstructured

grids and the aerodynamics of the Space Shuttle (NASA, 1990). In the

parallel suite, the Y-MP single processor version of the SOR employed
a Gauss-Seidel iteration on a cube geometry. As it travelled to each

plane, the algorithm visited the grid points in a red/black checkerboard

fashion to promote vectorization and applied Chebyshev acceleration

factors to speed convergence. These factors involved the spectral radius

of the Jacobi iteration, as estimated from the number of nodes in the

grid (Press, et al., 1986):

Rj=cos(pi/J)+(delx/dely)**2 * cos(pi/L)/(l+delx/dely)**2 (3)

where there were J by L nodes in the two-dimensional grid and for our

problems, delx=dely. This formula strictly applies for a two-

dimensional problem, and the 3D SOR employed this formulation of

the acceleration factor with good results.

With some user intervention, the Cray autotasker, FPP (Cray, 1988)

parallelized this calculation by allowing the CPUs to operate on the red

points on all planes and then on the black points on all planes. FPP

extracted essentially all of the parallelism available at a cube size of 256

and FPP's version of the code performed at over 80% efficiency on an 8-

CPU Y-MP. Measurements of code performance indicated that the large

problems were able to amortize the overhead from load imbalance and

delay from memory conflicts.

3.2 Modifications for Parallel Execution on the Hypercube

The initial iPSC/860 version of the SOR maintained the FPP planar

parallelism, i.e., each node of the iPSC/860 updated a single plane

while maintaining the red/black ordering. Each node employed

synchronous message passing to transmit its values as a boundary

condition to the adjacent nodes. The nodes then checked for global

convergence before initiating a new iteration. Performance on a 128-

node problem, with each node calculating on a 128 by 128 point square

was only 35 MFLOPS. Allowing each node to treat several planes

improved the performance slightly to 36 MFLOPS.
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A decomposition with an improved ratio of computation to

communication (Fox, et al., 1988) motivated a second implementation

of the SOR. The large memory bandwidth of the Y-MP permitted

efficient execution of the "cube of planes" decomposition, but the

smaller memory bandwidth of the hypercube required a "cube of

cubes" ensemble as shown in Figure 2.

Figure 2

iPSC/860 27-Node Ensemble
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The amount of computation depends upon the volume enclosedby

the component cube while the amount of data transmitted to

neighboring component cubes depends upon the surface area of the

individual component cubes. The improved decomposition has a

larger volume to surface-area ratio than the planar decomposition, i.e.,

it performs a larger amount of computation for a given amount of data
transfer.

A comparison of the ratio of the computation load to the

communication load allows rough estimate of the effectiveness of the

two decompositions. The computation load is the total number of

floating point operations performed by all nodes in an iteration and the

communication load is simply the total number of 8-byte words

transferred by all nodes in an iteration. These ratios are easy to establish

for the two algorithms since the code is compact. Figure 3 displays the

ratio: (MFLOPS per Mword) for two decompositions, one consisting of a

cube of cubes and the other consisting of a cube of planes. The X-axis

denotes the number of grid points on an edge for each of the nodes in

the decomposition. Relative to the cube of planes decomposition,

Figure 3 shows that the cube of cubes decomposition performs a greater
amount of calculation for each word of data transferred .
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The improved decomposition, in which each cube generally has 6

neighboring cubes, required each cube to identify the node numbers of

its nearest neighbors to ensure proper message-passing. The messages

consisted of the values in the calculated planes nearest the adjacent

node. These values were exchanged as boundary values with the

neighboring node. The decomposition is termed a simple domain

decomposition with overlapping boundary values.

The above decomposition admits a variety of parallel SOR

implementations. One hypercube implementation of the red/black

algorithm labels half of the iPSC nodes red and the other half black

while a second implementation labels grid points in the individual

iPSC nodes as red and black. Since the ordering requirement for the

first implementation dictates half-iteration on the red nodes and half-
iteration on the black nodes, half of the nodes would be

computationally idle during the iteration. The second implementation

requires that each iPSC node visit half of its grid points during the red

iteration and half of its grid points during the black iteration, and all

iPSC nodes would be working during the iteration. Both

implementations would require one synchronization and boundary

exchange after the red node update and one synchronization and

boundary exchange after the black node update.
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Idle processor considerations may also make attractive a third

implementation, the substitution of a simultaneous update scheme,

i.e., a Jacobi iteration. This change would reduce the message-passing

and keep the hypercube nodes busy during most of the problem. This

change would also slow the convergence of the iterations because

acceleration factors would no longer apply.

A desire to maintain convergence while employing a tool-oriented

transformation dictated the selection of the first method for this report.

The first method, employing the global red/black algorithm, seemed

most likely to be achieved by a parallel tool since it is the closest in

spirit to the Y-MP version. The nodal red/black version requires

detailed bookkeeping, although it may be a more efficient technique.

Substitution of the Jacobi iteration for the red/black technique would

reduce the rate of convergence. In fact, parallel decomposition can

strongly effect the rates of convergence for the SOR algorithm (Adams

and Jordan, 1986). Since this report emphasizes issues involved in an

automated port of vectorized code to a parallel machine, convergence

questions will be deferred as beyond the scope of the present work.

An attempt to maintain consistency among the variously-sized

ensemble calculations required a modification to the termination

criterion. The Y-MP version used the reduction of a global norm below

an input value to signal the end of the calculation. For the hypercube,

this criterion does not ensure that average values on each node are

close enough to the desired values. Instead, the hypercube versions

require that the average value in the cube approach an input value.

3.3 Code Performance

This section discusses the parallel performance of SOR algorithm on

the iPSC/860. Table 1 shows performance as a function of problem size

for acceleration factors determined by the prescription given above.
The table includes extra cube sizes for the M-node ensembles since the

regular sizes of 32 and 64 suffers severe performance degradation from

cache-thrashing.
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Table 1
Red/Black SORiPSC/860 Performance

128"'3 Problem

Ensemble Cube Size Iterations Telapsed Tcomm MFLOPS Efficiency

27 43 192 64.3 40.6 83.4 0.078

64 32 175 43.1 26.3 105.2 0.041

64 34 184 33.3 21.9 173.7 0.068

125 26 168 16.3 11.6 267.1 0.053

256**3 Problem

Ensemble Cube Size Iterations Telapsed Tcomm MFLOPS Effiaency
27 86 353 866.7 493.3 97.8 0.091

64 64 316 594.6 335.4 121.6 0.048

64 66 324 375.6 221.9 217.1 0.085

125 52 292 178.9 114.5 382.4 0.077

The decreases in elapsed time indicate that the decomposition has

allowed the effective application of an increasing number of nodes.

The column labelled "Tcomm" represents the time spent in the

communication routines and the global sum. The ensembles spend

more than 50% of the elapsed time in the communication routines and

the dominant amount of this time is spent blocking while waiting to

receive a message. Dividing the total problem floating point operations

by the time spent in computation only gives computation rates

averaging between 5.3 to 8.5 MFLOPS per node. The measured ratio of

floating point operations to data words sent via message-passing

ranged from 19.3 for the 27-node 256**3 problem to 3.0 for the 125-node

128"'3 problem. The Performance Analysis Tool (PAT) indicated that

this decomposition allowed a balanced computational load across all

processors with about 40% of the elapsed time spent in computation.

The table shows that, for a given problem size, an ensemble composed

of a larger number of cubes requires less iterations than an ensemble

composed of a smaller number of cubes. This effect is counter-intuitive

since an increased number of cubes in an ensemble implies a greater

decoupling of the problem. The intuitive viewpoint neglects the

powerful influence of the Chebyshev acceleration factors. The problem-

dependent acceleration factors provided by the spectral radius (3) are

not optimal. Testing of the formula on single-cube problems indicated

that the spectral radius approach overestimates the optimal factors and

that the overestimate is larger for larger cube sizes. The effect of the

acceleration factors exceeds the decoupling brought about by

decomposition. The iteration data illustrate the importance of

understanding algorithm convergence properties before attempting a

parallel decomposition.
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Machine efficiencies, computed according to prescription given in

Section 2.3, lie in the 5-10% range as shown in Figure 4.
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Figure 4

SOR: Efficiency vs Number of iPSC Nodes
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One way to assess the decomposition is to examine how it scales.

Figure 5 shows the ensemble MFLOP rates as a function of increasing
number of nodes.
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Since the number of grid points assigned to each iPSC/860 node have

been chosen to conserve the total number of mesh points in the

ensemble, the amount of floating point computation per node per

iteration remains roughly constant. If there is no increasing loss to

communication time as the problem size increases, the increase in

ensemble MFLOP rate should be linear with the number of processors.

Figure 5 shows a somewhat less-than-linear increase in performance.

Although this algorithm is nearest-neighbor, most of the problem time

is spent in communication and the bulk of this time is in the message
receive (crecy) routines, where the node must wait, or block, until it

receives a transmitted message. Only half of the nodes are Calculating

during the iteration and this behavior seems to contribute the the poor

communication scaling. An obvious improvement to this

decomposition would modify the algorithm to permit asynchronous
communication.

Overall, the measurements indicates that the decomposition

produced a reasonable hypercube performance. Employing an 86**3

grid on the 125 node ensemble yields a performance of 430 MFLOPS.
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3.4 Lessons for Tools

The most important factor in porting the SOR to the iPSC/860 is a

decomposition which maximizes the ratio of volume to surface area.

This factor improved performance by a factor of 8 over the Y-MP

memory-intensive decomposition. This approach automatically results

in good data locality and favorable scaling characteristics. The

decomposition employs no Fortran extensions beyond those required

for nearest-neighbor message-passing and global sums.

To employ a cube of cubes decomposition, an automatic tool would

have to obtain the dimensionality of the problem from the user since

the Fortran implementation here uses two-dimensional arrays to

describe a three-dimensional geometry. The tool would have to color

the nodes quite carefully (again, with assistance from the user) to

ensure the opposite colors are the nearest neighbors in the three-

dimensional scheme. Application of red/black noding to the

individual nodes comprising the hypercube would allow all nodes to

compute during the iteration, but would require a more complicated

labelling arrangement to carry out the red/black ordering.

The key computations, carried out in the two DO-loops performing

the red and black global sweeps, require transmittal of data to the

neighboring nodes after the execution of the DO-loops.
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4.0 Shallow Water Model

4.1 Code Description

Many NAS users employ explicit timestepping of CFD equations

treating rate-dependent phenomena, such as combustion and other
chemical reactions (NASA, 1990). The finite difference equations for

the shallow water model (SWM) also employ explicit timestepping and

contain a space discretization based on Taylor expansions. The two-

dimensional SWM model, representing computations employed in

atmospheric modelling, is a system of three equations in three
unknowns, the x-velocity, the y-velocity and the height of the fluid.

The current formulation as presented by Sadourny (1975) and

implemented by Hoffman, et al. (1986), conserves the mean square

vorticity, or enstrophy. Application of periodic boundary conditions

and use of a regular geometry introduced a high degree of parallelism

into the code.

The previous report discussed the FPP implementation of fine-

grained parallelism through its creation of 3 parallel regions

corresponding to the major computational loops. CPU synchronization

occurred after completion of each DO-loop. The parallel version

displayed excellent Y-MP performance as this approach allowed almost

perfect CPU load balancing with each CPU executing a long-vector

length computational workload. The FPP-generated version displayed

an efficiency exceeding 0.9. Performance measurements indicated a

slight load imbalance generated by singletasked regions which

implemented the periodic boundary conditions. As the number of

CPUs increased and the elapsed time decreased, this load imbalance

exerted a greater influence because the fraction of time spent in

singletasked mode increased.

4.2 Modifications for Parallel Execution on the Hypercube

Geometry provided the basis for the high-level decomposition in that

each processor would work on a square subset of the global square.

Given this decomposition, the most obvious way to parallelize SWM

was to parallelize the three major DO-loops just as FPP had done on
the Y-MP.

Decomposition into a square of squares required a two-dimensional

version of the nearest-neighbor message-passing routine described in

section 3.2. After each of the three double DO-loops, transmittal of

newly calculated pressures and velocities to remote-neighbors satisfied

the doubly periodic boundary condition. An additional data transfer to

nearest-neighbors satisfied the continuity requirements for the

decomposition.
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Figure 6 shows the boundary transfers for a schematic 4 by 4 mesh. The
shaded regions represent outer rows or points of the boundary nodes.

Figure 6

iPSC/860 4x4 Mesh with Boundary Conditions
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All interior nodes send and receive messages from their 4 nearest

neighbors. Nodes containing the boundary points send and receive

messages from their nearest neighbors and also send and receive

messages from the appropriate remote nodes. Figure 6 shows the types

of remote neighbor exchanges required by the boundary conditions.

Processor nodes in the top row of the mesh compute values on grids,

which contain the boundary points as their top rows. These nodes

must exchange their boundary values with the boundary values of

nodes on the bottom of the 4 by 4 mesh. Similar exchanges occur for

nodes on the left and right boundary. Diagonal exchanges involve

values computed for the extreme points (only) on the opposite

diagonals of the mesh.
An initial 2-node iPSC/860 version of the SWM ensured that the task

decomposition performed correctly. Since the general problem would

involve many squares, some additional code was inserted to ensure

that global momentum and enstrophy were conserved. A second 4-
node version ensured that data transfers in all 4 directions executed

correctly. Decomposition of the general problem into a square of

squares on the iPSC/860 prevented the exact duplication of the Y-MP

results. The discrepancy arose because each iPSC/860 square required its

own boundary nodes and the single-square Y-MP had boundary nodes

at only 4 edges. Global momentum and enstrophy differed by less than

one percent between the Y-MP and iPSC/860 versions.
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4.3 Code Performance

This section discusses the parallel performance of SWM performance

on the iPSC/860. Table 2 shows performance as a function of problem

size for 200 timesteps.

Table 2

SWM iPSC/860 Performance on 1024"'2 Problem

Ensemble Grid Telapsed Tcomp Tcomm MFLOPS
36 171 98.2 84.2 14.0 139.4

49 147 76.5 62.5 14.0 179.9

64 128 60.4 47.4 13.0 225.8

81 114 51.5 37.5 14.0 265.7

100 102 44.3 30.3 14.0 305.3

121 94 40.5 25.9 14.6 343.5

The number of grid points per edge decreases as the number of

squares in the ensemble increases to maintain the same overall'

problem size. As the number of nodes increases, the time spent on

computation decreases and the time spent on communication remains

approximately constant. This observation would appear to apply to all

nearest-neighbor type algorithms and accounts for their effectiveness

on highly parallel machines. The time spent in the periodic boundary

condition message-passing contributes about 60% of the total

communication time. The measured ratio of floating point operations

to data words sent via message-passing ranged from 15 for the 16-node

problem to 8 for the 121-node problem. The Performance Analysis Tool

(PAT) indicated that the square of squares decomposition allowed a

balanced computational load across all processors with about 80% of

the elapsed time spent in computation.

Effm

0.096

0.092

0.088

0.082

0.076

0.071
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Figure 7 shows the machine efficiencies for the SWM application.

Figure 7

SWM Efficiency vs Number of Nodes
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The machine efficiencies are in the same range as the SOR problem
discussed in Section 3 and decrease to 7% for the 121 node case.

Figure 8 shows the scaling behavior of the SWM ensemble MFLOP
rates as a function of the number of iPSC nodes.
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Figure 8 indicates a slight departure from a linear increase in

performance. This behavior is expected since, with the increasing

number of nodes, the time spent in computation decreases and the

time spent in communication remains constant.

4.3 Lessons for Tools

The most important factor in porting the SWM to the iPSC/860 is a

decomposition which maximizes the ratio of the surface area to the

perimeter for the individual hypercube nodes. The key computations,

carried out in the three DO-loops performing the global sweeps, require

transmittal of data to treat the periodic boundary conditions after their

execution. Most of the porting effort consisted of constructing the

routines to enforce the periodic boundary conditions. While the square

of squares decomposition allowed easy expression of these conditions,

these relations involved 43 separate equations.
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5.0 Tridiagonal Solver--

5.1 Code Description

Tridiagonal systems occur repeatedly in finite-difference

approximations to differential equations with 2nd-order derivatives.

The Y-MP version of the tridiagonal solver employed the parallel cyclic

reduction technique (Hockney and Jesshope, 1988), a highly effective

method for solving tridiagonal systems on a vector computer and on a

multiprocessor.

The cyclic reduction method consists of a series of forward iterations,

which eliminate the odd-numbered equations. The procedure finally

arrives at a single equation; the algorithm then backsubstitutes through

the reduced systems until the original set of equations is solved.

The Y-MP version performed all phases of the reduction and

backsubstitution in parallel. The forward iteration involves the

recursive calculation of data on both the left and right sides of the

equations. Each step of the reduction accesses memory locations in a

nonlinear manner (skips through memory) because the number of

equations decreases by a factor of 2 in each reduction. The Y-MP

implementation exploited the shared memory to perform the

algorithm's non-sequential memory access by careful indexing. Every

CPU was able to access the data and the large system size amortized the

delay due to shared memory conflicts.

5.2 Modifications for Parallel Execution on the Hypercube

The initial implementation of the cyclic reduction algorithm

attempted to mimic the shared memory version by using a broadcast

approach (sending all data to all processors). The ratio of computation

to communication for this algorithm was extremely low, indicating the

algorithm was communication-bound. Reimplementation of cyclic

reduction using a pipelined technique with special coding to maximize

nearest-neighbor communication provided one option. However, the

partitioned vectorized solver (Wang, 1981) appeared more attractive

due to ease of implementation and low interprocessor communication

requirements. This solver partitioned the tridiagonal matrix into a set

of square blocks and then applied elementary row transformations to

obtain a structure with only one "independent" variable nested in each

partition. Figure 9 shows the matrix structure of a 16x16 system of

equations after the application of the row transformations. This

structure now consists of 4 systems (denoted by the horizontal layers)

for execution on 4 processors.
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Figure 9

Transformed Partition of 16x16 Tridiagonal Matrix
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The figure also shows that the row transformations have reduced the

system to 4 independent equations, denoted by asterisks. A Gaussian

algorithm performed by a single processor (node 0) can solve the

reduced tridiagonal system for the unknowns x04, x08, x12, and x16.

Each processor sends only 4 words to the master processor solving the

reduced system and receives only 4 words from the master.

Backsubstitution, performed in parallel, provides the solution to the

remaining 12 unknowns.

The 4-word transmittal requirement is independent of the number of

equations in the block and this feature makes the algorithm scalable for

systems with many processors. On Cray architectures, however, the

partitioned solver does not parallelize well. The algorithm requires
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that the outer loop denote the number of equations in the system and
the inner loop denote the number of partitions. This arrangement
limits the amount of work given to eachCray processor.

5.2 Code Performance

Table 3 shows ensemble performance as a function of matrix size. The

base case treats a 2"'16 linear system, i.e., a system of 65536 coupled

equations. For comparison, a typical two-dimensional CFD problem

(100 by 100 with 4 unknowns per node) has about 40,000 unknowns.

The table also shows the performance of two larger systems to show the

affect of additional work on the performance of the algorithm. For 100

passes through the solver, single processor performance data are as
follows:

Table 3

Partitioned Tridiagonal Solver- iPSC/860 Performance

2"'16 Linear System

Ensemble Telapsed Tcomp Tcomm MFLOPS Effm
8 5.73 5.72 0.10 32.1 0.100

16 3.00 2.71 0.28 61.4 0.096

32 1.76 1.29 0.47 104.5 0.082

64 1.37 0.34 1.03 133.9 0.052

128 2.42 0.41 2.01 75.6 0.015

2"'17 Linear System

Ensemble Telapsed Tcomp Tcomm MFLOPS Effm
8 11.38 11.28 0.10 32.4 0.101

16 5.85 5.60 0.25 62.7 0.098

32 3.18 2.71 0.47 115.3 0.090

64 2.12 1.20 0.92 172.3 0.067

128 2.76 0.95 1.81 132.5 0.026

2"'18 Linear System

Ensemble Telapsed Tcomp Tcomm MFLOPS Effm
8 22.69 22.59 0.10 32.4 0.100

16 11.51 11.02 0.49 63.8 0.100

32 5.98 5.27 0.71 122.7 0.096

64 3.67 2.76 0.91 199.7 0.078

128 2.78 2.07 0.71 263.8 0.052

The table shows that increased processors tend to reduce and then

increase elapsed times for each system. Generally, additional processors

decrease computation times and increase communication times.

Analysis of the time required for arithmetic operations and

communication yields an algebraic expression for the total time
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required for the parallel computation (Johnson, et al., 1987). For a fixed

problem size, evaluation of the formula as a function of the number of

processors indicates a minimum total time. The cost of the forward and

backward eliminations decreases with additional processors, but the

Gaussian system which must be solved by a single processor grows

with increasing processors. Communication costs also increase with

increasing processors.
The measured ratio of floating point operations to data words sent via

message-passing ranged from 1250 for the 8-node 256**3 problem to 16

for the 128-node 256**3 problem. For the larger systems, PAT indicated

that this algorithm overloaded node 0 with the Gaussian elimination

computation. Application of the partition algorithm recursively to the
Gaussian elimination would reduce this imbalance. The average

processor spent about 10% of its elapsed time in computation.

Figure 10 shows the efficiency as a function of the number of

processors.
Figure 10

Partitioned Tridiagonal Solver-

iPSC/860 Efficiency
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For two-dimensional systems, implementation of the NASPACK

(Lee, 1991) tridiagonal solver would increase efficiency by decreasing

the time spent by the single node in solving the reduced system.

Figure 11 shows the performance as a function of number of

processors.
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The increased communication costs combine with the cost of solving

a large system on single node to produce a peak in ensemble

performance. The figure suggests that this peak has yet to occur for the

2"'18 system.

4.3 Lessons for Tools

The most important factor in porting the tridiagonal solver to the

iPSC/860 was the ratio of computation to communication. The

decomposition employed for the partitioned solver was algorithmic,

whereas the previous two sections employed decompositions based on

geometry. In all cases, an approach which maximizes the above ratio

was the key feature contributing to the effectiveness of the hypercube

decompositions.

Tools should assist the user in evaluating the computation to

communication ratio. If this ratio is low, the tool can at least help to

inform the user that the algorithm needs revision. While it may be

unlikely for a tool to provide custom solvers, a site may be able to assist

its users by providing examples of such solvers.
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6.0 Alternating Direction Implicit Algorithm

6.1 Code Description

The Alternating Direction Implicit (ADI) method forms an important

class of solution procedures on the NAS machines, especially in the

field of global circulation models (NASA, 1990). The ADI algorithm

employs an operator splitting technique to decompose the problem

into multiple one-dimensional subproblems. The algorithm used in

the Y-MP port followed a standard, modular implementation (Press, et

al., 1986), replacing the Gaussian solver described therein by a

power-of-2 cyclic reduction method to solve the tridiagonal systems.

The Cray autotasker, FPP, constructed a parallel version from the

vector version described above by executing the assembly and

backsubstitution loops of the x-sweep and the y-sweep in parallel.

Calculations in the cyclic tridiagonal solver were also performed in

parallel. Even with the tridiagonal solver brought into the main

routine, FPP could not recognize that the entire operation, i.e.,

assembly, solution, and backsubstitution, for each column of the x-

sweep and each row of the y-sweep could execute in parallel. The tool

uncovered useful parallelism only in the solver.

6.2 Modifications for Parallel Execution on the Hypercube

Experience with the hypercube cyclic reduction algorithm, as described

in Section 5, led to the adoption of the partitioned solver as a more

efficient tridiagonal solver. Insertion of this solver into the ADI in the

standard manner of passing single rows or planes to the solver in a

synchronous fashion gave poor performance.

An analysis of ADI methods recommended pipelining the algorithm

to improve performance (Johnson, et al., 1987). A pipelined algorithm

consists of a sequence of stages and has the property that new

operations can be initiated at the start of the pipeline while other

operations are in progress through the pipeline. Compilers commonly

apply pipelining to optimization of loops on vector architectures

(Stone, 1987).

Pipelining the ADI method requires that all parts of the algorithm,

assembling the left and right hand sides, the solver, and the

backsubstitution execute in a stepwise fashion. The method requires a

partitioning of the main computational loops into a set of tasks which

can begin one after another before the previous task has completed.

Creating such a partition requires a fairly strong understanding of the

various dependendes in the algorithm.

Two partitions were employed in the ADI algorithm. The partitioned

tridiagonal solver dictated a domain decomposition involving the
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ensemble grid. The desire to amortize communication overhead
dictated the second partition involving a coarse-grained division of the
nodal mesh into blocks or slices. Figure 12 illustrates first partition and
the nodal data transmittal for the ADI iteration which does an x-sweep
and a y-sweep on a 3 by 3 mesh.

Figure 12
iPSC/860 ADI Nine-Node Ensemble Decomposition
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In the first stage of the x-sweep (sweep by rows), each of the nodes in
the same row sends the results of its forward elimination to the node

immediately to its left. At a later stage, each of the nodes in the same

row sends the results of its backward eliminations to the x-sweep

"driver" nodes, which are located in the left column.

In the first stage of the y-sweep (sweep by columns), each of the nodes
in the same column sends the results of its forward elimination to the

node immediately below it. At a later stage, each of the nodes in the

same column sends the results of its backward eliminations to the y-

sweep "driver" nodes, which are located in the bottom row.

An ADI iteration can employ the above decomposition and

synchronous data communication while sweeping across single rows

or columns of each nodal mesh. Performance results for this strategy,

defined here as a synchronous fine-grained iteration, are shown in the
next section.

However, efficient hypercube pipelining requires asynchronous

communication. In the pipelined ADI scheme, the node can post a
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receive request and then do some more work, such as assembling the
next right and left-hand side,before using the data required by the
receive request. In this way, computation overlaps with
communication. Implementation of this scheme must contain a
sufficient amount of computation to amortize the overhead of
communication, i.e., the implementation should be coarse-grained.

Figure 13 illustrates the second partition, the division of the x-sweep

nodal calculation into blocks. The figure shows a mesh requiring 4

passes to complete a single x-sweep iteration. Each pass includes block 1

and block 2, and each of these blocks may contain a single row or a

group of rows. Double-buffering refers to the requirement of separate

temporary storage areas for block I and block 2. Testing determined that

a two-pass partition provided the maximum performance for these

problems; thus, each of the blocks operated on one-fourth of the mesh.

Figure 13

ADI Double-Buffered X-sweep
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Figure 14 illustrates the approach to pipelining the nodal calculations.

The ADI algorithm consisted of 4 separate stages (denoted as msp for

multistage pipeline) as shown in the figure.
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Figure 14
Double-Buffered ADI Pipeline
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msp13 & msp23-driver nodes-solve;other nodes-receivedataand backsolve

Since the algorithm consists of 4 separatestages,it would be possible
to employ a 4-way buffer on the problem, but the limited time spent in
communication as shown in the next section seems to indicate that the
additional stageswould incur little performance benefit.

6.4 Code Performance

The base case treats a square with 1024 nodes per edge to give about 1

million points per grid. Table 4 shows performance data for the

synchronous and asynchronous ADI versions. As with the SOR

discussed in Section 3, acceleration factors play an important role in the

rate of convergence and use of the same factor for all the ensemble

sizes gave a consistent number of iterations.
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Table 4
ADI iPSC/860 Performance on 128"'3 Problem

Synchronous---Fine-grained
Ensemble Grid Telapsed Tcomp Tcomm MFLOPS Effm

16 256 283.3 255.6 27.7 41.1 0.064
25 206 199.6 177.9 21.7 58.8 0.059
36 172 158.4 140.8 17.6 74.0 0.051
49 148 129.5 115.0 14.5 90.8 0.046
64 128 106.7 95.2 11.5 104.9 0.041
81 114 102.4 90.4 12.0 109.7 0.034
100 100 95.4 85.4 10.0 122.7 0.031
121 94 88.1 79.3 8.8 130.7 0.027

Asynchronous---Coarse-Grained
Ensemble Grid Telapsed Tcomp Tcomm MFLOPS Effm

16 258 244.0 243.7 0.145 49.5 0.078
25 206 143.1 142.9 0.095 81.9 0.082
36 174 105.0 104.9 0.064 116.7 0.081
49 150 82.3 82.1 0.073 153.2 0.078
64 130 63.8 63.7 0.060 188.9 0.074
81 114 51.6 51.5 0.077 216.9 0.067
100 100 52.6 52.5 0.059 241.4 0.060
121 94 45.3 45.2 0.042 254.4 0.053

Table 4 shows that the asynchronous algorithm outperforms the

synchronous algorithm by a factor of 1.2 to 1.8 and this ratio is quite

significant since the domain decomposition was already quite efficient.

The measured ratio of floating point operations to data words

transferred via message-passing ranged from 37 for the 16-node

ensemble to 10 for the 121-node ensemble. The time spent in the

computational part of the asynchronous implementation is less than

that of the synchronous scheme. The division of the mesh into several

blocks produced an increased cache efficiency similar to that gained by

stripmining as discussed in section 2.3.

Figure 15 shows similar decreases in efficiency for both versions of the

ADI and since the Table 4 showed negligible communication overhead

for the asynchronous algorithm, the reason for similar declines appears

to be the reduction in computational performance due to the smaller

amount of work for the smaller problems. Partitioning the work into 4

quarters to amortize the overhead exaggerates the reduction effect.
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Figure 15

ADI: Efficiency vs Number of iPSC Nodes
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Figure 16 shows the scaling behavior of the ADI ensemble MFLOP

rates as a function of the number of iPSC nodes.
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Figure 16 indicates both algorithms display less-than-linear increases

in performance. Strong load imbalances and communication delays

dominate the synchronous version. Pipelining the algorithm raises the

level of node utilization throughout the calculation.

6.4 Lessons for Tools

Implementation of the ADI on the hypercube required considerable
modification of the Y-MP code. The extensive communication load

associated with the cyclic reduction solver required a different solution

algorithm. The smaller amount of data transmission associated with

the partitioned solver influenced its selection as a highly parallel

tridiagonal solver. Pipelining improved hypercube performance by a

factor of 2. The improved ADI algorithm employed three different

communication patterns: a one-way transfer to the node immediately

"beneath" it in the decomposition, a transfer to and from the driver

nodes during the solution phase, and a global sum for convergence

checking.

While it may be unlikely for a tool to provide custom solvers, a site

may be able to assist its users by providing simple examples of effective

solution techniques.
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PAT Output

Efficient performance did not occur until the algorithm was pipelined,

asynchronous and coarse-grained. While PAT indicated load balance

problems, the tool was unable to disclose the insufficient amortization

of communication. Figures 17 and 18 show PAT output for the

synchronous fine-grained and asynchronous coarse-grained cases.

These figures are normalized histograms of the elapsed time spent in

the five fundamental tasks. For the NAS configuration, the time

denoted by FLICK is the time spent by the node in blocking execution as

it waits to receive a message. The figures show different levels of node

utilization, and the more efficient version in Figure 18 has a higher

level of utilization by the calculation tasks.

The spikes in the node utilization histogram correspond to the driver

nodes defined in section 6.2. These nodes spend a considerable amount
of time in both calculation and communication. Node 0 has the

highest utilization because it serves as a driver node for both sweeps.

The PAT output does show that the algorithm has a load balancing

problem.

However, a static representation does not help the user to understand

whether the pipelining is effectively allowing nodes to overlap

communication with computation. The user needs a dynamic

representation to see if the nodes are busy while communication

occurs. Observation of the CPU status lights on the hardware cabinets

provided this information and the next generation of the Intel

supercomputer will apparently make this information available even
to remote users.
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7.0 Multigrid Algorithm

5 ¸

7.1 Code Description

Multigrid solution techniques are an advanced form of relaxation

algorithm which allows NAS users to accelerate the convergence of
their CFD codes (NASA, 1990). A simple two-grid iteration technique

begins by a number of relaxations on a fine grid followed by a

projection of the errors to a coarse grid. Relaxations on the coarse grid

are then followed by an interpolation back to the fine grid. Three basic

operations comprise the multigrid technique: relaxation, projection,

and interpolation.

The multigrid algorithm in the Y-MP version of the suite employs a

3-dimensional version of a standard V-algorithm (McCormick, 1987) to

solve Poisson's equation on a power-of-2 cube. The base case employs 5

grids with 2**7 points on the fine grid and 2**3 points on the coarse

grid. The recursion present in a serial visit with a Gauss-Seidel solver

to all grid nodes dictated a red/black ordering. A relaxation cycle

includes separate visits to the red and the black nodes using separate

Gauss-Seidel solvers. For each grid in the descending part of the V, the

technique contains multiple relaxation cycles and a projection. For each

grid in the ascending part of the V-cycle, the technique contains a

relaxation on red nodes, multiple relaxation cycles and an

interpolation from the coarse black nodes to the fine black nodes.

Subroutines corresponding to the three multigrid operators, i.e.,

relaxation, projection, and interpolation, consist of triple DO-loops

visiting either the red or the black nodes.

To parallelize the vector code, the Cray autotasker, FPP, constructed a

parallel region by placing each iteration of the outer loop in parallel.

The red iteration employs only black points, which are themselves

constant during the red iteration. This technique decouples the

calculation of the red planes and, for the black iteration, decouples the

calculation of the black planes. For each color on a given grid,

calculations on each of the planes are performed in parallel with FPP

distributing one plane per processor.

7.2 Modifications for Parallel Execution on the Hypercube

The code presented herein represents a straightforward and almost

tool-based port of the Y-MP code to the iPSC/860. The vector Y-MP

decomposition assigns each plane of a cube to a processor. The results

presented in Section 3 indicate that this method incurs a large
communication overhead because each node sends a large amount of

data relative to the amount of calculation required. A more efficient

two-dimensional hypercube decomposition consisted of a domain
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decomposition involving nonuniform square regions (Briggs, et al.,

1990). On each level, the various subgrids created by this decomposition

contain different numbers of points and different overlapping

boundaries.

A straight Y-MP port provides an example of an approach frequently

employed by current parallel tools. This approach consisted of

parallelizing the three multigrid operators at the loop-level.

For the shared memory Y-MP, the data structure consists of solution

and right-hand side vectors which are stored contiguously in single

arrays. As the V-cycle descends into coarser grids, it involves fewer and

fewer planes, but level-dependent offsets allow easy access to the

various shared memory locations. These offsets also permit easy

memory access on the ascent part of the V-cycle.

For the distributed memory hypercube, each active node has 3 planes

in memory, but it requires data from two other nodes. As with the Y-

MP version, the fine grid relaxation can exchange data with

neighboring locations. In this case, the neighboring locations are in

contiguously numbered nodes. Data transfer in the coarser grids

required careful routing to duplicate the Y-MP memory activity and the

eventual construction of a table listing the Y-MP planes active during

each phase of the iteration greatly assisted in the port. Eventually,

experience with the data transfers allowed algorithmic expression of all

sending and receiving nodes during each level of the multigrid
scheme.

7.3 Code Performance

The base case treats a cube with 129 points per edge, which

corresponds to a problem size of about 1 million points. Table 5

provides performance data for this port.

Table 5

MGR iPSC/860 Performance on 3D Problem

Ensemble Telapsed Tcomp Tcomm MFLOPS Effm
6 2.1 1.1 1.0 0.3 0.001

14 4.2 2.1 2.1 1.5 0.002

30 10.6 5.6 5.0 5.4 0.004

62 36.2 19.1 17.1 13.2 0.005

126 131.3 69.7 63.8 30.3 0.006

Table 5 indicates almost equal fractions of time spent in computation

and message-passing. The measured ratio of floating point operations

to data words sent via message-passing ranged from 0.5 for the 6-node

problem to 0.45 for the 126-node problem. This low ratio is the reason

for the poor performance displayed by this decomposition. The small

increase in node efficiency is apparently due increased cache efficiency.
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Figure 19 shows the efficiency for this decomposition.

Figure 19

MGR: Efficiency vs Number of iPSC Nodes
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7.4 Lessons for Tools

The port of the MGR to the iPSC/860 attempted to maintain the Y-MP

problem and performed poorly because of heavy communication loads.

This result is reminiscent of the initial port of the SOR to the Y-MP

described in Section 3. A more effective port may require a

nonuniform decomposition which would be very difficult to

implement with a parallel tool.
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8.0 Discussion

The previous sections have illustrated the types of changes required to

convert various Y-MP vector codes into iPSC/860 codes. The Cray

autotasker, FPP, produced shared memory parallel versions of the

vector codes, generally requiring only minor algorithm modification to

improve the parallel efficiency. The original vector codes treated

problems with simple geometries and FPP produced highly regular,

load-balanced, parallel decompositions.

The porting of these vector codes to the distributed memory iPSC/860

provides examples of reasonably efficient parallel code created from

vector source code and can assist in the evaluation of parallel tool

software. Typical modifications were made at a task level, the next

level above that of the DO-loop and an efficient parallel tool would

presumably create or assist the user in creating a similar source.

Utilization of the manual ports as a template could allow constructive

criticism of source files created by inefficient parallel tools.

The following section reviews the changes required to port the vector

codes to the iPSC/860 in terms of the actions required by the parallel

tools. Section 8.2 briefly discusses the capabilities of the more

prominent tools and compares the current port with some previous
efforts.

8.1 Summary of the iPSC/860 Changes

NAS users typically employ vectorized code in programs involving

explicit solvers, relaxation algorithms, and implicit solvers. The

following discussion reflects lessons learned from the parallel suite

with these three general algorithms.

Explicit Solvers

The SWM code used a standard explicit algorithm in which the new

values at each node depend only on the old values and those of the

nearest neighbors. The iPSC/860 porting effort combined a simple

domain decomposition with a nearest neighbor communication

scheme to create a distributed memory parallel code. Satisfaction of the

periodic boundary conditions required special coding to identify the

nodes transmitting and receiving the remote neighbor messages.

For the SWM, the parallel tool would have to generate both a task-

level decomposition and also a schedule for the periodic boundary
conditions.
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Relaxation Algorithms

The vectorized iterative solvers, SOR and MGR, employed red/black

schemes, implemented in the case of the SOR with indirect addressing,

and implemented in the case of MGR with indexing offsets.

A straightforward port of the SOR which employed the Y-MP domain

decomposition produced poor performance because this decomposition

led to high communication loads relative to the computational work.

Replacement of this decomposition with one containing a reduced

communication load gave a factor of 20 speedup in performance.

As with the SOR, a straightforward port of the MGR produced poor

performance because the Y-MP data decomposition led to high
communication loads relative to the computational work.

Replacement of this decomposition with one that better suited the

iPSC/860 architecture was not possible during this time frame, but

examination of other distributed memory multigrid ports indicated

that a specially tailored decomposition was required to obtain efficient

hypercube performance.

For the SOR, the parallel tool would have to generate both a task-level

domain decomposition and a nearest-neighbor communication

schedule. To port the Y-MP version of the MGR, the parallel tool must

generate a domain decomposition which is custom-made and
nonuniform. The iPSC/860 version presented here decomposed the

problem along loop-levels and performed very poorly.

Implicit Solvers and Algorithms

Implicit schemes employ global linear system solvers to obtain the

solution of the system at a given timestep, and efficient parallel

performance requires both a highly parallel solver and highly parallel

pre-solver routines to assemble the left-hand and right-hand sides.

The PARACR code, exemplifying a shared memory global solver,

employed a modification to the standard odd-even cyclic reduction to

provide an algorithm with high potential parallelism. The heavy

communication load imposed by this algorithm forced its replacement

by a less communication-intensive, partitioned tridiagonal solver.

The ADI code combined a simple domain decomposition with a

standard solution algorithm which employed the partitioned solver for

the tridiagonal equations. The initial version did not perform well and

was rewritten as a pipelined algorithm. This version performed better,

but a factor of 2 improvement was achieved by modifying it further to

effectively amortize the communication overhead.

For the PARACR, the parallel tool cannot generate an efficient solver

from the memory-intensive vector algorithm. A tool processing such a

source could at least notify the user by recording the amount of data
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transmitted. For the ADI, the parallel tool would have to generate both
a task-level mapping and also a loop body pipelining to allow parallel
execution of the assembly tasks.

8.2 Previous Work

The development of parallel tools for distributed memory machines

has recognized the importance of data decomposition. Effective data

distribution is a prime goal of the Fortran D language (Hiranandani,

Kennedy, and Tseng, 1991). Data decomposition and loop pipelining

are two of the general methods used to test a mapping compiler

(Sussman, 1993). Optimizations aimed at allowing a distributed

memory machine to efficiently compute inner loops over globally

defined data structures have also been proposed (Saltz, et al., 1990).

These tools apply certain architecture-specific optimizations to

constructs around or within the loops and seem to employ an approach

resembling the Cray autotasker, FPP.

None of the above tools attempts to assist the user in a coarse-grained

decomposition similar to the ones employed in porting the vector

codes to the iPSC/860. Instead, these parallel tools employ various

forms of dependency analysis to partition loops by columns or rows.

While loop-level code transformations can improve the iPSC/860

cache efficiency, this approach will produce code with high

communication loads because it must employ the decomposition

specified by the user in the loop itself.

A high-level approach to creating distributed memory code generally

involves an abstract approach because it must contain details for

creating architecture-specific versions of a user's source code. The

MUPPET utility provides an abstract machine layer and a topological

mechanism for efficient mapping of the abstract machine onto the

multiprocessor (Muhlenbein, et al., 1988). The PIE approach provides a

set of basic parallel algorithms, termed implementation machines, and

supplies the necessary control, communication, synchronization, and

activity decomposition (Segall and Rudolph, 1985). High-level

approaches may have suffered in the past by trying to incorporate many

different parallel architectures and task decompositions.

Since the successful iPSC/860 ports all employed high-level

decompositions, these high-level approaches would seem to deserve

additional support and further investigation. Other investigators

(Singh and Hennessy, 1992) have also noted the primary role played by

domain decompositions i_l constructing efficient distributed memory

programs. These result_ seem to argue for a high-level tool with

specific capabilities.
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8.2 Observations for Preprocessors

A data decomposition tool producing efficient hypercube

performance will provide effective data transmittal. The manually-
obtained iPSC/860 versions of the vector Y-MP codes presented herein

imply that data decomposition will be an ineffective approach to

creating efficient parallel code on distributed memory multiprocessors.

However, any decomposition provided by a parallel tool should

measure the amount of message-passing which occurs during the

problem execution. Users can measure the effectiveness of

decompositions by examining the ratio of the number of floating point

operations to the number of data words transmitted. This type of

measurement does not require extensive tracking of elapsed time.

8.3 Observations for Postprocessors

The iPSC/860 version of the ADI performed poorly because of

inadequate amortization of communication overhead. While the PAT

tool did inform the user of load-balancing problems, its static

representation did not assist in this problem. Real-time visual

observation of the node status lights on the machine cabinet indicated

a large amount of processor hold time and motivated the more

successful coarse-grain decomposition. A tool should be able to access

such signals and transmit the information to the user.

Distributed memory tools should provide guidance to the user in a

manner similar to the atexpert tool (Cray, 1990).

Execution of the fine-grain and coarse-grain ADI code with the AIMS

postprocessor (Fineman, 1992) would be a worthwhile exercise to see if

this tool can provide information equivalent to the visual observation

of the iPSC/860 node status lights.
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9.0 Conclusions

The results of porting several vector codes to the iPSC/860 indicate

that effective use of a distributed memory multiprocessor requires code

design features not present in vector code. These include an

architecture-dependent data distribution and the pipelined execution of

algorithms.

A high-level domain decomposition created four successful iPSC/860

codes whereas the loop-level decomposition created a poorly

performing iPSC/860 code. Domain decompositions are effective on

this architecture because they possess strong data locality and load-

balancing characteristics. Such decompositions also display

computation burdens proportional to the volume enclosed by the

domain and data communication requirements defined by the domain

perimeter. This property leads to excellent scaling characteristics for

algorithms employing domain decompositions.

Mapping the data in a manner which exploits the multiprocessor

architecture is a necessary but not always sufficient condition for

effective hypercube performance. Efficient mappings may be the most

important factor in porting explicit solvers and relaxation techniques to

the hypercube, but efficient mappings alone will not lead to high

performance implicit solvers. Processors tend to idle during the global

data transfers involved with implicit solvers, and codes must overlap

communication with computation to achieve high node utilization.

Pipelining is one fairly simple technique to achieve such overlap.

The implementation issues associated with parallel programming,

communication and synchronization, were easy to resolve after the

high-level decomposition. The iPSC parallel programs employed

standard Fortran constructs supplemented with a few communication

calls and some global arithmetic functions.

The usefulness of domain decomposition and pipelining apply quite

specifically to the numerical problems solved by NAS users, time-

dependent, partial differential equations. These conclusions strongly

support the adoption or development of a specific type of high-level

parallel tool, one with the domain decomposition and pipelining

templates. Users of such a tool must understand the algorithms used by

their code, but the results presented in this report indicate a strong

possibility of an effective parallel tool.

While the Intel debugger IPD helped t _ resolve some difficult

message-passing problems, resolution of performance issues in

asynchronous algorithms could benefit from a dynamic representation

of the Intel performance tool (PAT) data.
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